A new study suggests that this may not be such a fantasy. Researchers from Xi’an Jiaotong-Liverpool University, Stanford University, Shanghai Jiao tong University, and the University of Chinese Academy of Sciences have reported that supplementing a diet with the sea organisms Ascidiacea, also known as sea squirts, reverses some of the main signs of aging in an animal model.
Sea squirts can be eaten raw and are found in dishes from Korea (where it is known as meongge, or 멍게) and Japan (hoya, or ホヤ). These sea organisms contain substances called plasmalogens, which are vital to our body processes.
Plasmalogens are found all over our bodies naturally, particularly in the heart, brain and immune cells, but as we get older, the amount in our body decreases. This loss is also a characteristic of several neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease.
To investigate whether boosting the levels of plasmalogens can stave off the effects of aging, the researchers studied the effects of adding plasmalogens to the diet of aged mice.
They found that the supplements had profound effects on the learning abilities and physical symptoms of these mice.
Professor Lei Fu, the corresponding author of the study, says: “Our research suggests that plasmalogens may not just stop cognitive decline, but may reverse cognitive impairments in the aging brain. Additionally, aged mice fed with the plasmalogens grow new black hair that is thicker and glossier than aged mice not fed the supplement.”
This study is the first to show, in detail, how plasmalogens affect the aging brain.
Making new connections
The effects of the plasmalogen supplement on learning and memory were tested by training mice to use a Morris water maze—a pool of water that contains a platform that serves as a resting area. Generally, mice do not like to swim, so over five days of training, they remember where the platform is and swim directly to it as soon as they are in the pool. However, older mice take longer to find the platform after the same amount of training.
Astonishingly, when fed with plasmalogens, aged mice perform more like young mice, finding the platform much quicker than the control group of aged mice that have not been given the supplement.
To find the reason for the improvement shown by plasmalogen-fed mice, the researchers took a closer look at changes happening within the brain. They found that mice that were fed the plasmalogen supplement had a higher number and quality of synapses—the connections between neurons—than the aged mice not given the supplements.
Be First to Comment